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Abstract

A decade ago, Micceri (1989) presented a convincing case that data sets in education and

psychology are very often not normally distributed. In a follow-up Monte Carlo study,

Sawilowsky and Blair (1992) demonstrated that the familiar two-group t test is nonetheless

reasonably robust when used in situations where both groups were sampled from one of the non-

normal forms that had been documented by Micceri as relatively common with real data.

These results serve to confirm the typical textbook advice of the robustness of such

parametric procedures as the t test to violations of the normality assumption. While violation of

the homogeneity of variance assumption has received considerable attention, violation of the

assumption of normally distributed data has not received as much attention. As a result,

researchers may have the mistaken impression that as long as the assumptions of independence of

observations and homogeneity of variance are satisfied, violations of the distributional assumption

have inconsequential effects. The current paper will review some of the relevant literature and

report the results of a new Monte Carlo study indicating that this is not the case.

The simulation investigated the effects of varying skewness and kurtosis levels, while

maintaining equal population variances, on the two-sample t test and Welch's robust t test. Sample

sizes were either small or moderate, and equal or unequal. Results indicated that, with skewed

distributions, the validity of both the t test and the Welch test clearly depends on the two

distributions being skewed in the same direction. When the two parent distributions are skewed

in the same direction, both tests have quite acceptable Type I error rates, even with relatively

small samples (say, m = n = 9). However, when the two parent distributions are skewed in

opposite directions, then the true Type I error rates can deviate markedly from the nominal level

even though population variances are equal. Specifically, the actual Type I error rate of the I test

performed at a .05 nominal level with homogeneous variances can be higher than 0.08 with a two-

tailed test, and can be higher than 0.11 with a one-tailed test.

Key Words: group comparison, t test, skewness, kurtosis, Welch's test.
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1. INTRODUCTION

Statistics texts for the behavioral sciences tend to emphasize the robustness of parametric

procedures, such as Student's two-group t test, to violations of the distributionalassumption of

normality. While consequences of violation of the homogeneity of variance assumption are

widely recognized and many texts introduce Welch-type tests for use in comparing means when

variances are heterogeneous, violation of the assumption of normally distributed data has not

received as much attention. As a result, researchers may have the mistaken impression that as

long as the assumptions of independence of observations and homogeneity of variance are

satisfied, violations of the distributional assumption have inconsequential effects. The current

paper will review some of the relevant literature and report the results of a new Monte Carlo

study indicating that this is not the case. Practical guidance about the effects of skewness or non-

normal kurtosis will be offered.

Suppose that one has a quantitative variable X (e.g., WAIS IQ, Reaction time in a perception

study, or the Tolerance scale of the California Personality Inventory), and wants to decide

whether the mean of X is the same in two different populations (e.g., in males and females; in

neurotics and psychopaths; or in low and high education groups). If one has two independent

samples taken from the two populations, the most common way to address this question is to use

the familiar Student's two-sample t test (see, e.g., Wilcox, 1996, p. 126). To perform this test

one calculates the t statistic:

t
X

1
X2

1
S

b
+

m n

(1)

In this formula xl and x2 are the averages of the two independent samples, m and n are the

corresponding sample sizes, and sb is the square-root of the pooled within sample variance, which

can be determined by computing the weighted average of the two sample variances, (s1)2 and (s2)2,

by the following formula:

4



(m -1)s1 + (n 1)s2
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M + n 2

(see.Wilcox, 1996, p. 128). If we test the null hypothesis

against the alternative hypothesis

1/0: g = 112

H1: µ # 1.12

at significance level a, Ho will be retained if t falls into the

T = (-tan, tan)
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(2)

(3)

(4)

region of acceptance, where ta,2 is the 1-ta12 percentile value of the t distribution with df = m+n-2

degrees of freedom. If t falls on or outside of the border of this region, 110 will be rejected.

In the one-tailed case if we test Ho against H1: µX < pto or H2: µX > 110, the corresponding

regions of acceptance are T1= (- t0.05, (") and T2 = toms).

Besides the independence of the two data samples, the validity of the t test rests on two other

assumptions as well: the distribution of X must be normal and the variances identical in the two

populations. It is well known that the variance homogeneity assumption of the two-sample t-test

must be taken seriously. Admittedly, the general finding is that the distorting effect of variance

heterogeneity can be somewhat diminished by using equal sample sizes. However, if the sample

sizes vary and the larger sample size is paired with the larger variance, the t test will be unduly

conservative (yielding an unwanted drop of power), and if the larger sample size is paired with the

smaller variance, the t test becomes too liberal (yielding a marked increase in the Type I error

rate). As an example, if m = 15, n = 5, and al = 202, then the Type I error of the t test at a = .05

level drops to .038, and if m = 15, n = 5, and al = .5a2, then the Type I error of the t test at a =

.05 level increases to .072 (see Scheffe, 1959, p. 353, Table 10.4.1).
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If the variance homogeneity condition of the t test is not satisfied, the best alternative for

testing the null hypothesis in (3) seems to be the Welch test. The test statistic of this test is

- _

1/
Xl- X2

(5)

where a = (s1)2/m, and b = (s2)2/n. If the Ho null hypothesis (cf. (3)) is true, the t' statistic can be

approximated with a t distribution having degrees of freedom

df + b)2

a2 b2

m-1 n-1
(6)

(see, e.g., Wilcox, 1996, p. 133).

The normality assumption of the t test is always mentioned in the textbooks written for the

social and behavioral sciences, but the effects of its violation are rarely explained in detail. For

example, Maxwell and Delaney (1990) comment about the omnibus test in analysis of variance

(ANOVA), the multi-group generalization of the t test, as follows: "ANOVA is generally robust

to violations of the normality assumption, in that even when data are nonnormal, the actual Type I

error rate is usually close to the nominal (i.e., desired) value" (p. 109). Although Maxwell and

Delaney acknowledge that exceptions to this robustness can occur, others, particularly Wilcox

(1996, p. 131), have argued that the robustness is assured only in the case of equal sample sizes,

and even then the power can be unsatisfactory.

Increased interest in the effects of non-normality was prompted in part by Micceri (1989),

who a decade ago presented a convincing case that data sets in education and psychology are very

often not normally distributed. In a follow-up Monte Carlo study, Sawilowsky and Blair (1992)

demonstrated that the familiar two-group t test is nonetheless reasonably robust when used in

situations where both groups were sampled from one of the non-normal forms that had been

documented by Micceri as relatively common in real data. Their results thus seemed to confirm

the typical textbook advice about the robustness of such parametric procedures as the t test to
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violations of the normality assumption.

However, a limitation of the Sawilowsky and Blair study is that the two samples being

compared were always sampled from the same population distribution. In practice it may well be

the case that a given dependent variable will display a similar type of non-normality in all groups,

e.g. an achievement measure that is easy for most students may show extreme negative skew

because of a consistent ceiling effect seen in all groups. But both simulation and mathematical

results suggest that such similarity of distributional forms across groups may be critical.

Sawilowsky and Blair (1992, p. 359) note that their study did not change the conclusions

reached by studies that "focused on populations modeled by well-known mathematical functions".

For example, one such previous study by Posten (1978) demonstrated that the t test is "an

extremely robust test statistic" (Cressie & Whitford, 1986, p. 137) with non-normal distributions

when one has equivalent skewness and kurtosis across the two populations being compared.

Similarly, Monte Carlo studies reported by Pearson and Please (1975) and O'Gorman (1995)

showed that if the distribution of X has the same shape in the two populations, then the t test

performs adequately with respect to a Type I error.

Based on mathematical derivations, some authors conclude that if the distribution of X is not

normal, then in order to maintain the validity of the t test one has to insure that the skewness level

(including its sign) be the same in the two populations to be compared (see, e.g., Scheffe, 1959,

pp. 346-347; Miller, 1975, p. 42). In a paper providing helpful commentary on such derivations,

Cressie and Whitford (1986, p. 135-137) remark that "the effect of perhaps large (but equal)

skewnesses in the two populations, cancel".

Cressie and Whitford's formulas (1986, Equations 2.4-2.5) show that to approximate the

value of the t test statistic in non-normal populations one must take into consideration not only

the sample sizes and variances but also the skewness and kurtosis in the two groups being

compared. In those special cases where sample sizes are equal and variances are equal, the t

statistic is still affected by the difference in the skewness parameters for the populations being

compared. The current simulation study was conducted to determine how large a difference in

skewness levels the t test could tolerate without being affected by the varying distribution shapes

across groups.

Simulation analyses investigating performance of the the robustness of the t test with non-

7
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normal distributions have been less common than investigations of heterogeneity of variance.

Some of the relevant literature is helpfully summarized by Cliff (1996, p. 144ff.). For example,

based on their Monte Carlo analyses Pearson and Please (1975), and O'Gorman (1995) concluded

that if the distribution of X has the same shape in the two populations, then the t test performs

adequately with respect to a Type I error. However a simulation study of Algina, Oshima, and Lin

(1994) revealed that the validity of the t test can be substantially lowered even with identical

variances and distribution shapes in the situation where the sample sizes are markedly different.

As an example, in the case of lognormal distribution (with skewness level, a3 = 6.1), m = 75, and

n = 25 Algina et al. (1974) found that at the a = .05 nominal level the Type I error rate was

actually .065 for the lower one-tailed t test, and .036 for the upper one-tailed t test, whereas for

the two-tailed t test it was .045 (see Algina et al., 1994, Table 3). It seems fair to say that

performance of the t test when distributions have identical variances but different shapes is not

well understood by researchers, and in particular there seems to be little understanding of how

large a difference in skewness across the two distributions the t test can tolerate without an

unacceptable decrease in its validity. Given this uncertainty, in practice one has essentially no

information about the chance of a false decision with the t test if the distributions of X are skewed

but the variances are not significantly different.

A logical idea is that the Welch test, which is offered as a substitute of the I test in the case of

variance heterogeneity, may also be an appropriate alternative to t in the case of nonnormality.

Unfortunately, the results of the simulation study of Algina et al. (1994) clearly show that the

Welch test does not always fulfill this expectation. For example, with lognormal distributions, al =

02, m = 75, and n = 25, the estimated Type I error rate of the Welch test at a = .05 level turned

out to be .021, .100, and .063 in the lower one-tailed, upper one-tailed, and two-tailed cases

respectively (see Algina et al., 1994, Tables 2 and 5). When the two samples were generated from

different distributions but having identical variances (the first from a normal, the second from an

exponential), then in the two-tailed version the type I error rate of the Welch test seemed to be

acceptable (varying between .048 and .059) with equal sample sizes, but increased markedly

(varying between .062 and .068) with unequal sample sizes (see Algina et al., 1994, Table 4). The

performance of the Welch test in the heterogeneous case can be even worse if the distribution of

X is extremely skewed (see Algina et al., 1994, Tables 2 to 9).

8
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In the present study the effects of a number of different combinations of distribution shapes

were investigated by systematically varying the the skewness and kurtosis levels in the two

populations. Using simulation methods to approximate Type I error rates, we were able

to determine what types of distribution pairs would invalidate Student's t test and the Welch test.

2. DESCRIPTION OF THE MONTE CARLO EXPERIMENT

2.1 Type of parent distributions

Random variates were generated from the generalized lambda family of distributions, which offers

a variety of different shapes (Ramberg, Tadikamalla, Dudewicz, & Mykytka, 1979). These

distributions are given in standardized form and can be described in terms of skewness (a3 =

11.3/03) and kurtosis (a4=g4/o4), where g3 and 1..t4 are the third and fourth central moments. The

generalized lambda family covers a wide range of values of skewness and kurtosis so that for any

given value of skewness, several values of kurtosis can be specified (see Table 4 in Ramberg et

al., 1979). For the present study three levels of skewness were applied, and for each level of

skewness three levels of kurtosis were used (see Table 1). The lowest and highest levels of

kurtosis always represent the most extreme levels available in Table 4 of Ramberg et al. (1979).

The middle levels correspond to a medium level of kurtosis, which for a symmetric distribution

gives a generalized lambda distribution having the first four moments equal to those of the

standard normal. Note that the range of the possible kurtosis values depends heavily on the

skewness level. At a higher skewness level both the minimal and maximal kurtosis values are

higher than at a lower skewness level.

Table 1

Skewness (a3) and kurtosis (a4) values of the lambda-distributions used in the simulation.

Kurtosis

Skewness Low Moderate High.._
symmetric a3 = 0, a4 = 1.8 a3 = 0,a4= 3.0 a3 0, a4 9.0

moderately asymmetric a3= 1, a4= 3.4 a3= 1,a4 = 4.6 a3= 1, as = 10.6
heavily asymmetric a, = 2, a4 = 8.6 a, = 2,a4 = 9.8 a, = 2, a4 = 15.8

9
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The three levels of skewness together with the three levels of kurtosis for each yielded nine

different distribution types. Crossing the distribution types of the two samples yielded 9x9 = 81

different distribution combinations, all of them included in the simulation study. The asymmetric

distributions listed in Table 1 are all positively skewed (a3 > 0). In order to investigate the

appropriateness of the t test also for oppositely skewed distribution pairs, the six moderately and

heavily asymmetric distributions appearing in Table 1 were crossed with six distributions of

comparable skewness and kurtosis levels but with negative skewness. This yielded 6x6 = 36 more

distribution pairs for the two samples.

The lambda distributions were generated in standardized form (}t = 0, a = 1) as is described

in Ramberg et al. (1979). Therefore, the negatively-skeweddistributions were generated in the

same way as the positively-skewed distributions but with a simple multiplication by -1. In the

presentation below of results involving oppositely skewed distribution pairs, the first distribution

is always negatively skewed.

Thus, in the simulation the total number of different distribution pairs was 81 + 36 = 117.

2.2 Sample sizes

With respect to the sample sizes we varied the average sample size and the proportion of the two

samples sizes. Average sample size was studied at four levels: 9, 12, 15, and 18. The ratio of the

two sample sizes was either 1:1 or 1:2. Crossing these two factors yielded the following 8 sample

size combinations:

(a) equal samples: (m = n = 9), (m = n = 12), (m = n = 15), (m = n = 18);

(b) unequal samples: (m = 6, n = 12), (m = 8, n = 16), (m = 10, n = 20), (m = 12, n = 24).

2.3 Technical details of the simulation

For each choice of the 117x8 = 936 simulation arrangements, 100,000 simulation iterations were

used for assessing Type I error rates. At each iteration, N = m + n random variates of the desired

type were generated. The generalized lambda random variates were generated using the method

described in Ramberg et al. (1979). In this generation process, Turbo Pascal's Random function

was used to obtain pseudo-random uniform deviates. This is a linear congruential random-

number generator that has turned out to be one of the most preferable in a recent study (Onghena,

10
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1993), passing successfully ten criterion tests of randomness. Both the t and the Welch tests were

then performed on the current set of N variates and evaluated in one- and two-tailed forms with

significance levels .1, .05, and .01. Finally, the proportion of rejections was determined. This was

an estimate of the Type I error rate. With the number of replications we were using (100,000),

the standard deviation of an empirical Type I error rate was [a(1- a)/100000]112, which yielded

.00095, .00069, and .00031 if the true level were .1, .05, and .01 respectively.

3. RESULTS

3.1 The effect of the difference of the two skewness levels

First we analyzed the effect of the difference of the two skewness levels on the Type I error

rates of the t test. Because in the simulation design we applied three levels of skewness (0, 1, 2),

and the asymmetric distributions were combined to yield pairs with skewness in the same or

opposite directions, this resulted in seven possible values of the difference between the two

skewness levels: -4, -3, -2, -1, 0, 1, 2 (see section 2.1). For example one could get a difference of

-4 for Skewl - Skew2 if and only if the a3 skewness values of populations 1 and 2 are -2 and 2

respectively. For the other Skewl - Skew2 differences, the corresponding (Skewl, Skew2) pairs

that were possible were: for -3, (-1, 2) or (-2, 1); for -2, (-1, 1) or (0,2); for -1, (0, 1) and (1, 2);

for 0, (0, 0), (1,1) or (2,2); for 1, (1, 0), (2, 1); for 2, (2, 0).

Grouping the 117 distribution pairs according to this factor, the minimum, maximum, and

mean values of the obtained Type I error estimates were calculated for each of the above seven

groups. The resulting statistics at a = .05 and an average sample size of 9 are presented in Figures

1 to 3 for lower one-tailed, upper one-tailed, and two-tailed tests, respectively.

(Insert Figures 1 to 3 about here)

These figures present convincing evidence that, at an average sample size of 9, a large

difference in skewness causes a substantial loss of validity of the t test. Because a difference in

skewness of the variables whose means are being compared causes the observed distribution of

the t statistic also to be skewed, the bias in Type I errors is especially high if one uses a one-tailed

form of the t test. In this case the Type I error rate can be decreased or increased by 40% relative

11
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to the nominal level even if the difference of the two skewness levels is as low as 1 (see in Figure

1 the minimum value and in Figure 2 the maximum value corresponding to Skewl - Skew2 = -1).

If the difference of the skewness levels is larger, the bias can be far greater (see Figures 1 and 2).

The bias is milder in the two-tailed form of the t test (see Figure 3). It is worth noting that in

this case severe bias occurs only in the positive direction (causing an inflation of the t test) and

that only when the Skewl-Skew2 difference is -2 or more extreme. In the most extreme case,

where Skewl - Skew2 = -4, the estimated Type I error rate varies between .063 and .082, with

an average of .075. In this case the range of the bias is 26-64%, but it can reach 54% if Skewl -

Skew2 = -3 (see Figure 3).

(Insert Figures 4 to 6 about here)

If the average sample size is doubled (from 9 to 18), one gets a similar but less pronounced

bias (see Figures 4 to 6). Nevertheless the inflation in the Type I error rate can exceed the

nominal level by more than 80% even in this case if one uses a one-tailed form of the t test (see

Figure 5, results corresponding to Skewl - Skew2 = -4). However, in the two-tailed case the bias

of the Type I error rate does not exceed 40%, and it always remains in the ±20% region provided

that the Skewl - Skew2 difference is not less than -2 (see Figure 6).

(Insert Figure 7 about here)

The same mild degree of bias occurs also with an average sample size of 9 if one uses a = .1

instead of a = .05 (see Figure 7). By contrast, at the .01 alpha level the extent of bias of the Type

I error rate exceeds every acceptable limit if the Skewl - Skew2 difference is too negative (see

Figure 8). Doubling again the average sample size (to m + n = 36) we can see that in this case

the validity of the t test is already acceptable even at .01 alpha level, provided that the Skewl -

Skew2 difference does not exceed -1 in the negative direction (see Figure 9).

(Insert Figures 8 and 9 about here)

12
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3.2 The effect of kurtosis

The effect of the difference of the skewness levels on the Type I error rate has been shown to

be rather strong (see section 3.1). However, it is also striking that the difference between the

minimum and maximum Type I error rates was rather large under certain conditions (e.g., with an

average sample size of 9, and a = .05). For example in Figure 3 when Skewl - Skew2 is -2,

the minimum of the Type I error estimates is only .050 (right at the nominal level), whereas the

maximum is .068, which exceeds the nominal level by 36%. Similarly, at Skewl - Skew2 = -3 the

Type I error estimates fall into the range (.054 -.077), which corresponds in terms of percentage

bias to: (8% - 54%).

These findings indicate that in addition to skewness other factors, such as kurtosis, may also

play a nonnegligible role in determining the actual Type I error rate of the t test. To check this

possibility all distribution pairs were divided into three groups. A pair was put into the group

called "Normal-tailed pairs" if neither of the two distributions had a high kurtosis level in terms of

the classifications in Table 1. By contrast the group called the "Long-tailed pairs" consisted of

those pairs where both distributions had a high kurtosis level. The remaining distribution pairs

formed the group of "Mixed-tailed pairs". The combined effect of this grouping factor and the

Skewl - Skew2 difference with an average sample size of 9 and a = .05 is illustrated in Figure 10.

(Insert Figure 10 about here)

Figure 10 confirms that kurtosis also exerts a nonnegligible influence on the Type I error rate

of the t test. It is regrettable, however, that this effect is to inflate the error rate in the group of

"Normal-tailed pairs", which may occur most often in practice. Similar to what has been observed

with the effect of kurtosis on the Type I error rate of the one-sample-t test (Vargha, 1996; Vargha

& Delaney, in press-a), a high kurtosis level of both distributions may compensate for the strong

inflating effect of skewness in the case of the two-sample t test as well. The effect of kurtosis is

similar but milder in the case of larger samples (for average sample size = 15 see Figure 11).

(Insert Figure 11 about here)

13
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In the case of the Welch test the combined effect of skewness difference and kurtosis level is

presented in Figure 12. The picture here is much the same as in the case of the t test. For this

reason the Welch test does not seem to be a reasonable alternative when the normality assumption

of the t test is severely violated. Figure 13 shows that the combined distorting effect of the above

two factors may be considerable even with larger samples (average sample size = 18).

(Insert Figures 12 and 13 about here)

3.3 Effects relating to sample size

Results that have been discussed in sections 3.1 and 3.2 indicate that the increase in the

average sample size may substantially reduce the distortion caused by asymmetry (see Figures 1

vs. 4, 2 vs 5, 3 vs. 6, 8 vs. 9, 10 vs. 11, and 12 vs. 13). However, in the foregoing we have pooled

the data from equal and unequal sample sizes at each level of average sample size. In the current

section we focus on the effects of the factor of inequality of sample sizes.

From Figures 3, 6, and 7 to 11 one can discern that the validity of the t test begins to become

unacceptably low only for those pairs of distributions where Skewl is less than Skew2 by at least

2 units (i.e., when Skewl - Skew2 -2). Since the bias of the Type I error rate is always less for

Skewl - Skew2 = 2 than for Skewl - Skew2 = -2, we may presume that the inequality of the the

signs of the two skewness parameters is itself a distorting agent of the validity of the t test (in our

design Skewl - Skew2 = 2 occurs if and only if Skewl = 1 and Skew2 = 0, but Skewl - Skew2

= -2 occurs if either Skewl = 0 and Skew2 = 2 or Skewl = -1 and Skew2 = 1). Based on this idea

we determined the maximum Type I error rates of the t test at each level of average sample size

for m = n and m # n separately, segregating also the oppositely skewed distribution pairs (i.e.,

where the sign of skewness is negative for one distribution and positive for the other distribution)

and identically skewed distribution pairs (i.e., where the signs of skewness do not differ) (see

Figure 14).

(Insert Figure 14 about here)

Figure 14 allows to draw the following conclusions.

14
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1. The maximum possible Type I error rate is consistently higher for oppositely skewed

distributions than for identically skewed ones.

2. The inequality of sample sizes is a second factor that tends to increase the Type I error

rate.

3. If the average sample size increases, the maximal possible bias decreases. However, the

Type I error rate at a = .05 level can exceed .07 (i.e., 40% of the nominal level) even in the case

of average sample size = 18, provided that the sample sizes are different and the distributions are

oppositely skewed.

4. In that special case when the sample sizes are equal and the distributions are not oppositely

skewed the Type I error rate of the t test at a = .05 never exceeds .056 even if the average sample

size is as low as 9. This confirms the robustness of the t test in the equal-n situation.

From Figure 15 one can draw the same conclusions with respect to the Welch test as well.

(Insert Figure 15 about here)

A new and relevant question arises now. Will this nice robustness of Student's t test and

Welch-test under equal sample sizes and not oppositely skewed distributions remain if the

theoretical variances are allowed to differ to a slight extent? O'Gorman (1995) carried out a

similar simulation study with Student's 1 test, Welch test and some nonparametric tests for

assessing and comparing the validity and power of these two-sample procedures. For the

simulation O'Gorman applied the same generalized lambda-family of distributions as in the current

study, but the two distributions to be compared always had identical skewness and kurtosis levels.

The variances were allowed to differ only slightly: anwia,in s 1.3. Though O'Gorman's analysis

concentrated on the power of the t test and its alternatives, the estimated Type I error rates were

also reported. O'Gorman found that at a = .05 the estimated Type I error rates of the t test always

fell into the region (.035 - .065) (O'Gorman, 1995, p. 858). It must also be noted here that the

average sample size levels used in that study were 12, 50, 200, and 800, and the sample size ratios

used were 1:4, 1:1, and 4:1. O'Gorman also reported that the validity of the Welch test was

similar to that of the t test under m, n z 50, but for m = 12, n = 50 and Skewl = Skew2 = 3 the

Type I error rate of the Welch test increased markedly.
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The results of O'Gorman's Monte-Carlo study can briefly be summarized as follows. If the

two distributions to be compared have identical skewness and kurtosis levels and the larger

population variance is not greater than the smaller one by more than 30%, then the I test maintains

its validity even with considerably different sample sizes.

However, the results of the present study revealed that the t and Welch tests can maintain

their validity even if the shapes of the two distributions are different but not oppositely skewed,

provided that the average sample size is not less than 15 (see Figures 14 and 15) and the

population variances are equal. This latter requirement of variance homogeneity may probably be

weakened under m = n, since according to the results of our study the equality of sample sizes

substantially increases the robustness of both the t test and the Welch test even at an average

sample size of 9 (see Figures 14 and 15).

In order to check this hypothesis we carried out a new simulation analysis, using only those

81 distribution pairs where the two distributions are not oppositely skewed (see section 2.1). In

these arrangements the SD of the second population was always twice as large as that of the first

distribution: 02= 201. The applied sample sizes were m = n = 9 and m = n = 18. The results

concerning the maximal obtained Type I error rates of the two tests grouped according to the

maximal skewness level are presented in Figure 16. The maximal skewness level of a distribution

pair is simply the larger of the two skewness levels. It is 0 if both distributions are symmetric

(Skewl = Skew2 = 0); 1 if Skewl = 0 and Skew2 =1, or Skewl = 1 and Skew2 =0, etc.

(Insert Figure 16 about here)

Based on Figure 16 one can draw the following conclusions.

1. The possible maximal Type I error rate of both tests is positively related to the maximal

skewness level.

2. With larger samples (m = n = 18), the maximal Type I error rate of the t test is lower than

with smaller samples On = n = 9). However, if the maximal skewness level is as large as 2, the

Type I error rate may still be as large as 140% of the nominal level. On the other hand, if neither

distribution has a skewness level greater than 1 the bias of the t test never exceeds the acceptable

±20%.
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3. The maximal possible Type I error rates of the Welch test are somewhat smaller than those

of the t test. As a result, if m = n = 18 the Welch test seems to perform quite well: even if the

maximal skewness level reaches the value of 2, the maximal Type I error rate does not exceed

.068.

Summarizing: if the two sample sizes are equal and not low (m, n z 18), the skewness levels

are not extreme (max(Skewl, Skew2) s 1) and not opposite, and the populations' SD's do not

differ to a large extent (onwianiz, s 2), then the Type I error rates of the t testand the Welch test

are close to the nominal level in that the bias does not exceed ±20%.

4. DISCUSSION

The effect of violation of the variance homogeneity assumption of Student's two-sample t test

has been studied often and thoroughly by many authors. However, we cannot say the same with

respect to its normality assumption though recent studies indicate that nonnormal distributions

occur very frequently in practice (for examples from educational and behavioral investigations, see

Micceri, 1989). Therefore in the present study the validity of the t test was assessed under several

different conditions where the populations SD's were constrained to be equal (o, = 02). We

systematically varied the skewness and kurtosis levels, the average sample size (9, 12, 15, 18), the

ratio of the sample sizes (1:1, 1:2), the type of alternative hypothesis (lower one-sided, upper one-

sided, two-sided), and the a-level (.1, .05, .01). Along with the t test we analyzed the validity of

its best known robust alternative, the Welch test.

In general, our simulation results show the practical consequences of the mathematical

difficulties caused by differences in skew. Wilcox (1990) has reported that variation in skewness

results in a lack of independence of the numerator and denominator of the t. It turns out that the

correlation between the mean difference in the numerator and the square of the denominator of

the test is a function of the skewness of each distribution. The correlation is larger when the two

groups have distributions that are skewed in opposite directions, but the correlation decreases as

sample sizes increase. The current simulation thus documents the extent to which the Type I

error rate is influenced by this lack of independence of the numerator and denominator of the test

statistic.

Based on our simulation results we can draw the following general conclusions.

17
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Different distribution shapes may substantially lower the validity of the t test in the range of

average sample sizes we investigated (9 - 18) which occurs frequently in practice. The most

crucial invalidating factor observed was the difference between the two skewness levels. At its

worst this factor may virtually invalidate the t test in spite of o = 02.

The one-tailed forms of the t test are much more sensitive to violation of the normality

assumption than the two-tailed version. In the one-tailed case the extent of bias can be 100%

greater than the nominal level (see Figure 2), and or as much as 60% less (see Figure 1).

In the case of the two-tailed test the bias is somewhat smaller, because the one-sided effects

are opposite and therefore they partly neutralize each other. It is important to note that a

substantial bias in this case occurs only in the upper direction (causing an inflation of the t test). If

the two distributions are oppositely skewed, the Type I error rate can exceed the nominal level by

more than 60% (see Figure 3).

The effect of nonnormality on the Type I error rate is milder at the .1 alpha-level, and is most

pronounced at the .01 level (see Figures 8 and 9).

Regarding the effects of other factors, as with heterogeneity of variance, the smallness and

inequality of sample sizes can also exacerbate the effects of skewness on the Type I error rate.

The effects of non-normal kurtosis were not as pronounced as the effects of differential skewness,

but were nonetheless present. Interestingly, high kurtosis distributions with their long tails tended

to suppress the tendency of differences in skewness to inflate the Type I error rate. Differences in

skewness had most pronounced effects when the kurtosis level of the distributions being

compared was equal to that of the normal distribution.

An important result of the current study is that the above mentioned factors influence the

validity of the Welch test the same way as that of the t test. Therefore the Welch test cannot be

claimed to be a generally appropriate robust alternative to the t test. Nevertheless some usable

guidelines can be formulated based on Figures 14 to 16. If the sample sizes are nearly equal and

not very low (say m, n z 15), and the difference of the populations SD's is not striking (say

G./0min < 2), then the validity of the t test and Welch test will still be acceptable, provided that

the two distributions ar not heavily and oppositely skewed.

In conclusion, the implication of this study is that differential skewness across groups can

strongly influence the Type I error rate of the two-group t test. This effect can be exacerbated by
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unequal sample sizes across the two groups. One rule of thumb that could be suggested is that if

the frequency distributions in the two groups have opposite skewness the t test may not be valid,

particularly with unequal n. Stated numerically, one should pursue an adjusted test if the product

of the ratio of the sample sizes and the absolute value of the difference in skewness levels is

greater than 4. Adjustments in the critical value of the test statistic that incorporate information

about sample size, skewness and kurtosis are presented in Cressie and Whitford (1986).

However, the adjustments are very complicated numerically and have been reported by Wilcox

(1990) to sometimes "make matters worse" (Wilcox, 1996, p. 136).

Alternatively, in the case of heavily skewed distributions one might question the

appropriateness of the mean as a location parameter, which should represent the bulk of the

distribution. Some authors (e.g., Wilcox, 1996, 1998) recommend in this case modern robust

alternative procedures based on other location parameters (such as medians or trimmed means),

but the adequacy of these methods has not been empirically demonstrated for a wide range of

nonnormal distributions yet. An alternative solution may also be to test the stochastic equality of

the two populations rather than the equality of the two population means (or medians or trimmed

means). Two populations are said to be stochastically equal with respect to a variable that is at

least ordinally scaled if

P(x > y) = P(x < y),

where x and y are values taken at random and independently from populations 1 and 2

respectively (see Vargha & Delaney, 1998, 2000, in press-b). These authors report a recently

developed and empirically validated robust test of stochastic equality denoted as the FPW test,

which is a modification of a nonparametric two-group test due to Fligner and Policello (1981).

The FPW test is available in the most recent version of the MiniStat program package (Vargha,

1999).

A limitation of the current study is that we have focused exclusively on Type I error rates,

and thus have only examined the effect of nonnormality in situations where the null hypothesis of

equality of means is true. We do not have information on the prevalence of variations in skewness

across groups in multi-group studies. (Although Micceri (1989) indicated skewed distributions

19



Nonnormality Effects on t 19

were relatively common in education and psychology, he reported only data for the total sample

rather than variation in skewness values across subsamples.) Such changes in skewness without

changes in means or variances are likely rare, though perhaps conceivable in cases where the

range of values on the dependent variable is strictly constrained, e.g. in the case of a Likert scale.

But in reality differences in skewness seem more likely to arise in conjunction with mean

differences (and perhaps heterogeneity of variance) across groups. For example, in an educational

study, a floor effect (and the associated positive skewness) in a control group on an achievement

measure may be removed in a treatment condition that raises average performance. Similarly, in

an alcohol treatment study, the extreme positive skewness in drinking levels in an untreated

sample may be greatly reduced in an effective treatment condition that lowers the mean level of

alcohol consumption in part by greatly reducing the drinking levels of the heaviest drinkers. Thus,

it will be important to supplement the current study of Type I error rates with studies of the

effects of differences in skewness on power, and with investigation ofalternative procedures that

might not be as susceptible to inflation of Type I error rates as the two-sample t test.
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Figure 1
Empirical Type I error rate of the two-sample t test

as a function of the difference of the two skewness levels

(lower one-tailed test, a = 5%, m + n = 18)
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Figure 2
Empirical Type I error rate of the two-sample t test

as a function of the difference of the two skewness levels

(upper one-tailed test, a = 5%, m + n = 18)
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Figure 3
Empirical Type I error rate of the two-sample t test

as a function of the difference of the two skewness levels
(two-tailed test, a = 5%, m + n = 18)

0.08

0.07

0.06
ar

11. 0.05

0.04

4) 0.03

0.02

0.01

0

-t t t 1

-3 -2 -1 0

Skewl - Skew2

2

Maxirrum

Average
0 Minirrum

Figure 4
Empirical Type I error rate of the two-sample t test

as a function of the difference of the two skewness levels
(lower one-tailed test, a = 5%, m + n = 36)
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Figure 5
Empirical Type I error rate of the two-sample t test

as a function of the difference of the two skewness levels
(upper one-tailed test, a = 5%, m + n = 36)
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Figure 6
Empirical Type I error rate of the two-sample t test

as a function of the difference of the two skewness levels
(two-tailed test, a = 5%, m + n = 36)
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Figure 7
Empirical Type I error rate of the two-sample t test

as a function of the difference of the two skewness levels
(two-tailed test, a = 10%, m + n = 18)
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Figure 8
Empirical Type I error rate of the two-sample t test

as a function of the difference of the two skewness levels
(two-tailed test, a = 1%, m + n = 18)
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Figure 9
Empirical Type I error rate of the two-sample t test

as a function of the difference of the two skewness levels
(two-tailed test, a = 1%, m + n = 36)
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Figure 10
Empirical Type I error rate of the two-sample t test as a function of the difference

of the two skewness levels for different combinations of kurtosis levels
(two-tailed test, a = 5%, m + n = 18)
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Figure 11
Empirical Type I error rate of the two-sample t test as a function of the difference

of the two skewness levels for different combinations of kurtosis levels
(two-tailed test, a = 5%, m + n = 30)
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Figure 12
Empirical Type I error rate of the Welch-test as a function of the difference

of the two skewness levels for different combinations of kurtosis levels
(two-tailed test, a = 5%, m + n = 18)

0.09

0.08

sl)
CD

11-1

0.07

13 0.06
a)
a.

0.05

0.04

-4 -3 -2

Skewl -Skew2

2

-1 0-2

Normal-tailed pair

Mixed- tailed pair

o--- Long-tailed pair



Nonnormality Effects on t 28

Figure 13
Empirical Type I error rate of the Welch-test as a function of the difference

of the two skewness levels for different combinations of kurtosis levels
(two-tailed test, a = 5%, m + n = 36)
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Figure 14
Maximal Type I error rate of the two-sample t test

as a function of the average sample size for identically and oppositely skewed distribution
pairs with identical and different sample sizes

(two-tailed test, a = 5%)
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Figure 15
Maximal Type I error rate of the Welch-test

as a function of the average sample size for identically and oppositely skewed distribution
pairs with identical and different sample sizes (two-tailed test, a = 5%)
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Figure 16
Maximal Type I error rate of the two-sample t and Welch tests

as a function of the largest skewness level for not oppositely skewed distribution pairs
with identical sample sizes and 02 = 201 (two-tailed test, a = 5%)

0.085

0.08

0.075

0.07

0.065

0.06

0.055

0.05

0.045

0.04

0

Largest skewness level

3 0

2

--4--t, n=rrF9

n=rrF9

ot, n =nF18
eW, n=rrF18



U.S. Department of Education
Office of Educational Research and Improvement (OERI)

National Library of Education (NLE)
Educational Resources Information Center (ERIC)

REPRODUCTION RELEASE
(Specific Document)

I. DOCUMENT IDENTIFICATION:

ERIC
TM031495

Title:

ac-ct i Low /halliSy 7t-ed-5-a kki resI

Author(s): ijac o L I), beta ,Ael a.) AildrS VetraCka

Corporate Source: Uniuus 4 Ailea /40-k(co befa//m"-'-hir ox'/
k-.r of" es,yeltsloa ( iluzfary)

II. REPRODUCTION RELEASE:

Publication Date:
4-e R/f
iihwOriecerts

1
ilion() 2-0010

In order to disseminate as widely as possible timely and significant materials of interest to the educationalcommunity, documents announced in the
monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy,

and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given tothe source of each document, and, if
reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom

of the page.
The sample sticker shown below will be

affixed to all Level 1 documents

1

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 1

The sample sticker shown below will be
affixed to all Level 2A documents

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL IN

MICROFICHE, AND IN ELECTRONIC MEDIA'
FOR ERIC COLLECTION SUBSCRIBERS ONLY,

HAS BEEN GRANTED BY

2A

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 2A

n
Check here for Level 1 release, permitting Check here for Level 2A release, permitting

reproduction and dissemination In microfiche or other reproduction and dissemination In microfiche and In

ERIC archival media (e.g., electronic) and paper electronic media for ERIC archival collection
copy. subscribers only

Sign
here,--)
please

The sample sticker shown below will be
affixed to all Level 2B documents

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL IN

MICROFICHE ONLY HAS BEEN GRANTED BY

2B

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 2B

Check here for Level 2B release, permitting
reproduction and dissemination in microfiche only

Documents will be processed as Indicated provided reproduction quality permits.
If permission to reproduce is granted, but no box is checked, documents will be processed at Level 1.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminatethis document

as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system
contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies

to satisfy information needs of educators in response to discrete inquiries.

ef

Printed Name/Position/Title:

Fla (AA D42. la,214 Aar
-f

Telephone:
35 7 era -(f 5 C-d-77-139

"e:e.;16/1-oa3E-Mpil Aildreiss:
h e-_la P 4(441,41a

(over)



ERIC

May 8, 2000

Clearinghouse 'on Assessment and Evaluation

Dear AERA Presenter,

University of Maryland
1129 Shriver Laboratory

College Park, MD 20742-5701

Tel: (800) 464-3742
(301) 405-7449

FAX: (301) 405-8134
ericae@ericae.net

http://ericae.net

Hopefully, the convention was a productive and rewarding event. As stated in the AERA program,
presenters have a responsibility to make their papers readily available. If you haven't done so already,
please submit copies of your papers for consideration for inclusion in the ERIC database. We are
interested in papers from this year's AERA conference and last year's conference. If you have
submitted your paper, you can track its progress at http://ericae.net.

Abstracts of papers accepted by ERIC appear in Resources in Education (RIE) and are announced to
over 5,000 organizations. The inclusion of your work makes it readily available to other researchers,
provides a permanent archive, and enhances the quality of RIE. Abstracts of your contribution will be
accessible through the printed and electronic versions of RIE. The paper will be available through the
microfiche collections that are housed at libraries around the world and through the ERIC Document
Reproduction Service.

We are gathering all the papers from the 2000 and 1999 AERA Conference. We will route your
paper to the appropriate clearinghouse. You will be notified if your paper meets ERIC's criteria for
inclusion in RIE: contribution to education, timeliness, relevance, methodology, effectiveness of
presentation, and reproduction quality.

Please sign the Reproduction Release Form enclosed with this letter and send two copies of your
paper. The Release Form gives ERIC permission to make and distribute copies of your paper. It does
not preclude you from publishing your work. You can mail your paper to our attention at the address
below. Please feel free to copy the form for future or additional submissions.

Mail to:

Sinc ely,

AERA 2000/ERIC Acquisitions
University of Maryland
1129 Shriver Laboratory
College Park, MD 20742

Lalwrence M. Rudner, Ph.D.
Director, ERIC/AE

ERIC is a project of the Department of Measurement, Statistics & Evaluation


